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Abstract
We consider the adiabatic demagnetization in the rotating reference frame (ADRF) of a system
of dipolar coupled nuclear spins s = 1/2 in an external magnetic field. The demagnetization
starts with the offset of the external magnetic field (in frequency units) from the Larmor
frequency being several times greater than the local dipolar field. For different subsystem sizes,
we have found from numerical simulations the temperatures at which subsystems of a
one-dimensional nine-spin chain and a plane nine-spin cluster become entangled. These
temperatures are of the order of microkelvins and are almost independent of the subsystem size.
There is a weak dependence of the temperature on the space dimension of the system.

1. Introduction

Entangled states are very important for quantum computing,
teleportation, and cryptography [1]. Although entanglement
is a profound concept of quantum information theory, its
experimental realization in many-body systems has been an
unsolved problem up to now. Meanwhile the existing criteria
for the existence of entanglement [2, 3] allow us to investigate
entangled states in conventional NMR experiments [4]. It is
well known that entanglement emerges in systems of nuclear
spins at microkelvin temperatures [5, 6]. Such temperatures
can be achieved with the adiabatic demagnetization in the
rotating reference frame (ADRF) [7].

In the present paper we consider the emergence of
entanglement in the course of the ADRF in the system of
nuclear spins coupled by the dipole–dipole interaction (DDI).
We perform numerical calculations for a chain consisting of
nine spins and a plane nine-spin cluster in order to prove
the emergence of entanglement of its different subsystems.
We use the Wootters criterion [2] for the investigation of
the spin pair entanglement. Entanglement of subsystems
with larger numbers of spins is investigated with the positive
partition transposition (PPT) criterion [3]. Entanglement
emerges at approximately the same temperature, of the order

of microkelvins, for all subsystem sizes. However, the
temperature depends on the space dimension of the system.

2. The density matrix of a spin system at the ADRF

We consider a system of N nuclear spins s = 1/2 coupled
with the external magnetic field. The system is irradiated
by the frequency-modulated radio-frequency (rf) field, w(t),
which is perpendicular to the permanent magnetic field. The
Hamiltonian, Hlab, of the system in the laboratory frame can
be written as follows

Hlab = w0 Iz + Hdz + 2w1 Ix cos

[∫ t

0
w(t ′) dt ′

]
, (1)

where w0 is the Larmor frequency, w1 is the amplitude of the
rf field (in frequency units), Inα is the projection of the angular
momentum operator of the nth spin (n = 1, 2, . . . , N) on the
α axis (α = x, y, z), Iα = ∑N

n=1 Inα , and Hdz is the secular
part of the DDI Hamiltonian [4] which can be written as

Hdz =
∑
i< j

Di j (3Iiz I j z − �Ii �I j ), (2)

where Di j is the DDI coupling constant of spins i and j ,
and �Ii �I j = Iix I j x + Iiy I j y + Iiz I j z . The spin dynamics of
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the system are determined by the density matrix, ρ(t), whose
time evolution occurs according to the Liouville equation
(h̄ = 1) [4]

i
dρ (t)

dt
= [Hlab, ρ(t)]. (3)

Converting the density matrix, ρ(t), with the unitary
transformation

ρ(t) = e−iIz
∫ t

0 w(t ′) dt ′
ρ∗(t)eiIz

∫ t
0 w(t ′) dt ′

(4)

and neglecting the irrelevant terms oscillating with the double
Larmor frequency, one obtains the evolution equation for the
density matrix ρ∗(t)

i
dρ∗(t)

dt
= [(w0 − w(t))Iz + Hdz + w1 Ix , ρ

∗(t)]. (5)

According to (5) the Hamiltonian, H , of the system can be
written in the rotating reference frame (RRF) as

H = �(t)Iz + Hdz + w1 Ix , (6)

where �(t) = w0 − w(t) is the resonance offset of the
longitudinal frequency from the Larmor frequency. In the
course of the ADRF, the offset, �(t), changes slowly in order
to satisfy to the adiabatic condition [4]

|�̇(t)|
πw2

1

� 1. (7)

The condition (7) means that the resonance offset, �(t),
changes so slowly that the spin system is in the quasi-
equilibrium state at every moment of time [4]. Thus the
spin system can be described by the thermodynamic quasi-
equilibrium density matrix, ρeq(t), as

ρeq(t) = e−βH /Z , (8)

where β is proportional to the inverse temperature (β = h̄/kT )
and Z is the partition function. It is important to emphasize
that the temperature, T , is the spin temperature of the system
which is isolated from all other degrees of freedom. The
reason for such isolation is long spin–lattice relaxation times
which exceed spin–spin relaxation times by several orders of
magnitude [4]. The important consequence for our approach
is the following. The decoherence effects at entanglement
generation with ADRF are irrelevant.

The entropy, S, of the system is given by [4]

S = −k tr{ρeq(t) ln[ρeq(t)]}. (9)

We start the ADRF with � � wloc where wloc =
{tr {H 2

dz}/ tr [I 2
z ]}1/2 is the local dipolar field. Then the offset,

�(t), is the linear function of time

� = �0 − at (10)

where �0 and a are the given quantities. Since the entropy,
S = const, one can obtain the inverse temperature, β(t), in the
course of the ADRF, if the offset, �(t), is known. This means
that we obtain the density matrix, ρeq(t), during the ADRF. In
particular, the entropy, S, is

S = k N ln 2 + k N ln

[
cosh

(
β�

2

)]
− k

2
Nβ� tanh

(
β�

2

)

(11)
at � � wloc. Equation (11) can be used in order to find the
initial inverse temperature of the system.

3. The reduced density matrix of a spin pair at the
ADRF and the Wootters criterion

In order to obtain the reduced density matrix of an arbitrary
pair of spins i and j we use the approach developed in [5, 6].
The density matrix, ρeq(t), of (8) can be represented as [5, 6]

ρ =
3∑

ξ1,ξ2,...,ξN =0

α
ξ1ξ2···ξN
12···N x ξ1

1 ⊗ · · · ⊗ x ξN
N , (12)

where N is the number of spins in the system, ξk(k =
1, 2, . . . , N) is one of the values {0, 1, 2, 3}, x0

k = Ik is the
unit matrix of dimension 2 × 2, x1

k = Ikx , x2
k = Iky , x3

k = Ikz ,
and α

ξ1ξ2···ξN
12···N is a numerical coefficient. Averaging the density

matrix of (12) over all spins except spins i and j and taking
into account that tr{x ξk

k } = 0 (k = 1, 2, . . . , N; ξk = 1, 2, 3)

we arrive at the following expression for the reduced density
matrix, ρ

(i j)
eq (t), of the i th and j th spins

ρ(i j)
eq (t) =

3∑
ξi ,ξ j =0

α
ξi ξ j

i j x ξi
i ⊗ x

ξ j

j , (13)

where

α
ξi ξ j

i j = 2N−2 tr{ρx ξi
i x

ξ j

j }
tr{(x ξi

i )2(x
ξ j

j )2}
. (14)

The coefficients, α
ξi ξ j

i j , of (14) can be calculated numerically.
Then the reduced density matrix of the pair of spins i and
j is determined completely. In order to apply the Wootters
criterion [2] one should find the ‘spin-flipped’ density matrix,
ρ̃

(i j)
eq (t), which is

ρ̃(i j)
eq (t) = (σy ⊗ σy)[ρ(i j)

eq (t)]∗(σy ⊗ σy) (15)

where the asterisk denotes complex conjugation in the standard
basis {|00〉, |01〉, |10〉, |11〉} and the Pauli matrix σy =( 0 −i

i 0

)
. The calculation of the density matrix, ρ̃

(i j)
eq (t) and

the diagonalization of the matrix product ρ
(i j)
eq (t)ρ̃(i j)

eq (t) are
performed numerically. The concurrence of the two-spin
system with the density matrix ρ

(i j)
eq (t) is equal to [2]

C = max{0, 2λ − λ1 − λ2 − λ3 − λ4},
λ = max{λ1, λ2, λ3, λ4}

(16)

where λ1, λ2, λ3, and λ4 are the square roots of the eigenvalues
of the product ρ

(i j)
eq (t)ρ̃(i j)

eq (t).

4. The entangled state of a spin subsystem with its
environment at the ADRF

The spin pair entangled states are a simple type of
entanglement which can be described with the Wootters
criterion [2] completely. Meanwhile entanglement of bigger
subsystems of the system can also emerge in the course of
the ADRF. A necessary condition of separability is described
by the Peres criterion [3] which is known as the positive
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Figure 1. The concurrence, C , versus the dimensionless inverse
temperature, βD1, for spins 1 and 2 of the nine-spin chain according
to the Wootters criterion. The dashed line shows the same result
obtained with the PPT criterion; w1/D1 = 2.

partition transposition (PPT) criterion [3]. According to the
criterion, entanglement emerges, if after the transposition of
the density matrix over variables of one subsystem there
are some negative eigenvalues of the density matrix of the
system. We have written a program which allows us to
investigate entanglement of an arbitrary subsystem and its
environment in the nine-spin chain and in the square nine-
spin cluster in the course of the ADRF on the basis of the
criterion [3]. The PPT predicts the emergence of the spin
pair entanglement at the same temperature as the Wootters
criterion [2]. The PPT criterion uses the sum of the absolute
values of negative eigenvalues after the partial transposition of
the density matrix as a measure of entanglement. This measure
is called the double negativity [8]. We use the criteria of
entanglement [2, 3] for the investigation of the entangled states
in a nine-spin chain and a plane nine-spin cluster in sections 5
and 6. Our choice of nine-spin systems is limited by available
computational power. Notice that even the best available
supercomputers do not allow us to calculate spin dynamics
when the number of spins in the system exceeds 16 [9]. It
is worth noticing that we consider spin–spin interactions of all
spins in contrast to the approximation of the nearest-neighbor
interactions when the number of spins in the system can be
significantly increased [10].

5. Numerical analysis of entanglement in a nine-spin
chain at the ADRF

The results of the numerical investigation of the spin pair
entanglement for a linear chain consisting of nine spins
coupled by the DDI at the ADRF are represented in figure 1.
We started the ADRF with the offset �0 = 10D1 where
D1 is the DDI coupling constant of nearest neighbors in the
chain. The numerical calculations are performed for �n =
(10 − n)D1, n = 0, 1, . . . , 10. The corresponding values of
the inverse temperatures, βn = h̄/kTn(n = 0, 1, . . . , 10),

Figure 2. The double negativity versus the dimensionless inverse
temperature, βD1, for spin 1 of the nine-spin chain and the other
spins; w1/D1 = 2.

are found from (9) for the dimensionless entropy S/k = 0.5.
Figure 1 shows the concurrence of spins 1 and 2 of the nine-
spin chain as a function of the dimensionless parameter β D1.
At comparatively high temperatures, the concurrence is equal
to zero (see figure 1) and the spin system is in a separable
state. When the temperature becomes sufficiently low in the
course of the ADRF, the concurrence is sharply increasing and
entanglement emerges. The entangled state appears at β D1 ≈
1.1 (see figure 1), i.e. at T ≈ 0.5 μK when D1 = 2π104 s−1.
Notice that the ordered states of nuclear spins were observed
in a CaF2 single crystal at microkelvin temperatures [7].

The dashed line in figure 1 demonstrates that the results
for the spin pair entanglement obtained with the PPT criterion
coincide practically with the ones obtained with the Wootters
criterion. Figure 2 shows the double negativity versus the
dimensionless parameter β D1 for the first spin of the chain (the
first subsystem) and the other spins of the chain (the second
subsystem) in the course of the ADRF when the dimensionless
entropy S/k = 0.5. One can conclude that entanglement
emerges at β D1 ≈ 1.1. This result is close to that for the
spin pair entanglement. Figure 3 shows the double negativity
versus the parameter β D1 for the first three spins of the chain
(the first subsystem) and the other six spins of the chain (the
second subsystem) at the same conditions. Here entanglement
is getting sufficiently large at β D1 ≈ 1.1. In fact we
have found that entanglement of different subsystems emerges
approximately at the same temperature.

6. Entanglement in the square cluster of nine spins

The suggested method allows us to study entanglement in
the systems of arbitrary space dimensions. As an example,
we consider the square cluster consisting of nine spins (see
figure 4). The dipolar coupling constant of spins j and k (the
numbers of spins are pointed out in figure 4) is

D jk = γ 2h̄

r 3
jk

(1 − 3 cos2 θ jk), (17)
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Figure 3. The double negativity versus the dimensionless inverse
temperature, βD1, for the first three spins of the nine-spin chain and
the other spins; w1/D1 = 2.

Figure 4. The square cluster of nine spins.

(This figure is in colour only in the electronic version)

where γ is the gyromagnetic ratio, r jk is the distance between
spins j, k and θ jk is the angle between the vector, �r jk , and the
external magnetic field, �H0. The simple analysis yields

cos2 θ jk = 9({( j − 1)/3} − {(k − 1)/3})2(([( j − 1)/3]
− [(k − 1)/3])2 + 9({( j − 1)/3} − {(k − 1)/3})2)−1,

(18)

and

r jk = a(([( j − 1)/3] − [(k − 1)/3])2 + 9({( j − 1)/3}
− {(k − 1)/3})2)1/2, (19)

where a is the distance between the nearest neighbors in the
cluster, [q] is the integer part of q and {q} is the fractional part
of q .

Figures 5 and 6 show that the entangled states emerge
at β D1 = 1.3 in the two-dimensional cluster. Although the
temperatures of the appearance of entanglement are lower here

Figure 5. The double negativity versus the dimensionless inverse
temperature, βD1, for spins 1, 2, 4 (first subsystem) and spins 5, 6, 8,
9 (second subsystem), in the square cluster; w1/a = 2.

Figure 6. The double negativity versus the dimensionless inverse
temperature, βD1, for spins 1, 2 (first subsystem) and spins 3, 6, 9
(second subsystem), at w1/a = 2 in the square cluster of nine spins.

than in the one-dimensional case, they are almost the same for
different subsystems. The processes of destructive interference
are more effective in the two-dimensional cluster than in the
one-dimensional chain. They lead to a loss of many-spin
correlations which are responsible for the appearance of the
entangled states. Thus the temperature of the emergence of
entanglement is lower in the two-dimensional cluster than in
the one-dimensional chain.

7. Conclusion

We investigated numerically entanglement in the chain of
nuclear spins and in the square cluster with the DDI in
the course of the ADRF using a special computer program.
We showed that the entangled states emerge at microkelvin
temperatures for typical DDI coupling constants. Two
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criteria [2, 3] of entanglement yield the same results for
the spin pair entangled states. Entanglement of different
subsystems emerges approximately at the same temperature
and the pairwise entanglement can be used as an indicator
of entanglement of bigger subsystems. It is also worth
noticing that we take into account the DDI of the remote
spins in contrast to the works [5, 6] where the nearest-
neighbor interactions were only considered. The performed
calculations show that there are no entangled states of
remote spins either in one-dimensional or two-dimensional
cases. Entanglement emerges only if subsystems are in direct
contact. Entanglement of different subsystems at microkelvin
temperatures suggests possible applications of linear spin
chains in quantum information processing.
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